Our Blog

undefined

In continuation of Feb 2023 “Tips of the Month” (TOTM) and given the amount of investment and interest in hydrogen, we have decided to publish a series of TOTM to explore the opportunities, challenges, and potential solutions to hydrogen applications and uses; this is the second paper in the series. As such, we will continue this exploration with hydrogen compression and transportation by transmission pipeline systems – what are the permissible conditions and restrictions? This TOTM does not cover the pipeline materials compatibility issues, which will be a focus of another tip. In terms of the compression characteristics, what are the technical challenges for deployment? Specifically, we explore the possibility of blending a relatively pure hydrogen stream with a natural gas residue to supply 5.65x106 SCMD (standard cube meter per day) or 200 MMSCFD fuel gas to a heavy industrial unit. With the aim of achieving net zero, the objective is to maximize amount of hydrogen in the fuel gas by replacing hydrocarbons while meeting pipeline tariff and sales specifications.

undefined

Low or no carbon hydrogen production, distribution and consumption is thought to be one of the primary solutions to reaching net zero for heavy industry, possibly power generation, residential use for heating and cooking, as well as transportation. Hydrogen has a high heating value, and the combustion reaction does not produce CO2. According to H2 Tech, there are currently 876 green hydrogen projects, and 245 blue hydrogen projects ongoing. An example of the level of attention, in 2021 the U.S. passed the Infrastructure, Investment and Jobs Act (IIJA) which contains $9.5 billion in funding for hydrogen1. $8 billion of that is dedicated to the development of hydrogen hubs (H2Hubs) in the U.S.. In 2022, the Inflation Reduction Act (IRA) contained two tax provisions that will subsidize clean hydrogen production2. The U.S. Department of Energy (DOE) defines H2Hubs as a network of clean hydrogen producers, potential consumers, and connective infrastructure that are all located in close proximity to one another. The DOE will release the funding to six, and possibly up to ten, clean hydrogen hubs around the country. The interest in clean hydrogen is not just a U.S. trend. The U.K. has developed a Hydrogen Strategy3. Japan4, Australia5 and other countries are also looking to hydrogen as a key part to the solution of combatting climate change. The EU commission also plans on subsidizing “green” hydrogen to the tune of €800 million and will offer a “fixed premium” per kg of “green” hydrogen produced, subsidizing this production over a 10-year period6. Given the amount of investment and interest in hydrogen, we have decided to publish a series of “Tips of the Month” to explore the opportunities, challenges, and potential solutions to hydrogen applications and uses; this is the first paper in the series. As such, we will start this exploration from the beginning – what are the colors of hydrogen? How are they produced? What are their technical challenges for deployment? After that we will review the USE case for hydrogen. Why is there such an interest and focus for these investments? Our future tips will explore the possible end uses and benefits of hydrogen, thermodynamics of natural gas use versus hydrogen in industrial applications, safety considerations, transportation challenges and opportunities, storage, and end use capabilities. In addition, we will take a look at some cost comparisons, where possible of the different hydrogen production options. We hope you enjoy taking this journey with us. Our aim is to take a thermodynamically balanced non-biased view of possible applications, costs, and implications.

undefined

This Tip of the Month shows how a Short Cut Method (SCM) after one Performance Test Run (PTR) may be used to estimate the life of a Type 4A molecular sieve dehydrating a water-saturated feed of natural gas. The results of the proposed SCM have been compared with the rigorous manual calculations (May 2015 Tip of the Month) and the computer-generated calculations (June 2016 Tip of the Month) and good agreements were obtained. To learn more about this tip and past Tips of the Month, visit JMC Tip of the Month.

undefined

In general, gas viscosity is used in fluid flow pressure drop calculations, detailed heat exchanger calculations, and droplet settling calculations for separation. It is also used for trouble shooting and equipment sizing. In this Tip of The Month (TOTM), several options/methods for estimating viscosity of lean sweet natural (hydrocarbon) gases as a function of pressure, temperature, and relative density (composition) were reviewed [1- 4]. These methods were graphical charts or empirical correlations covering wide ranges of pressure (0.10 to 20 MPa, 14.5 to 2900 Psia), temperature (0 to 200 °C, 32 to 392 °F), and relative density (0.60 to 0.80). Using ProMax [5] a series of generalized charts presented to show the behavior of gas viscosity with pressure, temperature, and relative density (composition) and can be used to determine gas viscosity. Example charts are shown on page 2 To learn more about this Tip and past Tips of the Month, visit JMC Tip of the Month.

Oil Field Water Scaling Case Studies

undefined

The compatibility or scaling tendency of effluent production waters with reservoir formation waters in the oil field will be a major factor in determining the feasibility, as well as long term planning of produced water re-injection into a specific reservoir and defining engineering solutions for the injection system and specific compatibility of the designated mixed waters. A specific computer software can be used to evaluate the experimentally measured chemical analyses of effluent waters and formation water with a primary goal of determining the tendency of scale formation. The scaling tendency for the commingling of individual effluent waters with a defined formation water at reservoir temperatures and pressures may also be predicted. These data provide a fundamental basis to justify, or discard, the mixing of produced waters 1) by each other, 2) with available waters from other sources, 3) or in case of re-injection, with formation water at the reservoir conditions. Salman et. al. investigated the scaling tendency for four Gathering Centers (GC) of an oil field in the State of Kuwait [3]. Attention was given to the scaling tendency of CaCO3 and BaSO4 for various acceptable mixing proportions of a specific effluent water with formation water. To demonstrate the steps involved, this tip of the month reports the summary of results by Salman et. al.’s computer scaling study for four Gathering Centers [3]. In a follow-up tip, we will focus on scaling during rich MEG feed regeneration [1, 2]. To learn more about this Tip and past Tips of the Month, visit JMC Tip of the Month.

undefined

The July 2016 tip of the month (TOTM) considered the presence of methanol in the sour gas stream and determined the quantitative traces of methanol ending up in the sweet gas, flash gas and acid gas streams. To achieve this, the tip simulated a simplified MDEA gas sweetening unit by computer. That tip also studied the effect of feed sour gas temperature, methanol content, and the rate of replacing condensed reflux with fresh water on the sweet gas methanol content. For the two feed sour gas temperatures of 32.2 and 43.3 °C (90 and 110 °F) the tip studied three inlet gas methanol contents of 50, 250, and 500 PPMV. In each case the tip varied rate of freshwater replacement from 0 to 100 % by an increment of 20%. The simulated results are presented graphically. To improve methanol removal efficiency from the feed sour gas stream, the July 2016 TOTM was revisited, and the following modifications were incorporated. 1. Because the feed gas contains methanol, a known polar compound, we used ProMax simulation software with “Amine Sweetening – Polar PR” instead of “Amine Sweetening – PR” property package to perform all the simulations. 2. In July 2016 TOTM the “Water Draw” stream removed a specified fraction of the condensed reflux, and the “Fresh Water” stream added the same amount of fresh water to the return reflux at the top of regenerator column. A better alternative where the amount of water draw is supplied by the amine makeup tool of ProMax was used. 3. The effect of feed gas pressure on the methanol removal by amine sweetening process for pressures of 600, 800, and 1000 psig (4200, 5600, and 7000 kPag) was investigated and reported.

Filters Contact Us Menu 0 $0.00
Top